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Introduction

We have seen that a binary search tree is a useful

tool. I.e., if its height is h, then we can implement

any basic operation on it in O(h) units of time.

The problem: given an input of size n, how can we

arrange it in a binary search tree of height

O(logn)? [We cannot expect better then that].

Red-Black trees are one of many search-trees that

provide a good balanced solution to this problem.
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Properties of red-black trees 

red-black tree is a binary search tree with one

extra bit of storage per node: its color, which can

be either RED or BLACK. By constraining the

way nodes can be colored, red-black trees ensure

that the tree is approximately balanced. I.e., the

length of the longest path from the root to a leaf is

not more then twice the length of the shortest

one.
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Properties of red-black trees 

Each node of the tree contains the fields color, key,

left, right, and p. If a child or the parent of a node

does not exist, the corresponding pointer field of

the node contains the value NIL. We shall regard

these NIL’s as being pointers to external nodes

(leaves) of the binary search tree and the normal,

key-bearing nodes as being internal nodes of the

tree.
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Properties of red-black trees 

A binary search tree is a red-black tree if it satisfies the

following red-black properties:

1. Every node is either red or black.

2. Every leaf (NIL) is black.

3. If a node is red, then both its children are black. ( no  

two red nodes in a row)

4. Every simple path from a node to a descendant leaf 

contains the same number of black nodes.

5. (The root is black).
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Properties of red-black trees 

We call the number of black nodes on any path from

[but not including] a node x to a leaf the black-

height of the node, denoted by bh(x). By property 4,

the notion of black height is well defined, since all

descending paths from a given node have the same

number of black nodes. The black-height of the tree

is defined as the black-height of the root.
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Properties of red-black trees 

Red-black trees are good search trees

Lemma:

A red-black tree with n internal nodes has height at 

most 2log(n+1).
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Properties of red-black trees 

Proof:

We first show that the sub-tree rooted at any node x

contains at least 2bh(x)-1 internal nodes.

We prove this claim by induction on the height of x.

If the height of x is 0, then x must be a leaf (NIL), and the

sub-tree rooted at x indeed contains at least 2bh(x)-1 = 20-1 =

0 internal nodes.
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Properties of red-black trees 

For the inductive step, consider a node x that has positive height and

is an internal node with two children. Each child has a black-height of

either bh(x) or bh(x)-1, depending on whether its color is red or black,

respectively. Since the height of a child is less than the height of x

itself, we can apply the inductive hypothesis to conclude that each

child has at least 2bh(x)-1-1 internal nodes. Thus, the subtree rooted at

x contains at least

(2bh(x)-1 - 1) + (2bh(x)-1 - 1) + 1 = 2bh(x) - 1 internal nodes, 

which proves the claim.
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Properties of red-black trees 

To complete the proof of the lemma, let h be the height of

the tree. According to property 3, at least half the nodes on

any simple path from the root to a leaf, not including the

root, must be black. Consequently, the black-height of the

root must be at least h/2; thus:

n ≥ 2h/2-1,

which yields  2log(n+1) ≥ h. █
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Properties of red-black trees 

The dynamic-set operations SEARCH, MINIMUM,

MAXIMUM, SUCCESSOR, PREDECESSOR can

all be implemented in time O(logn).
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Rotations 

The search-tree operations TREE-INSERT and TREE-

DELETE run in time O(logn). However, the result may

violate the red-black properties. To restore these properties,

we must recolor some of the nodes in the tree, and make

some pointer changes.



We use rotations to change the pointer 
structure. They are presented by the following 
figures .Note that both LEFT-ROTATION and 
RIGHT-ROTATION run in O(1) of time. Only 
the pointers are changed – the other fields 
remain the same.
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Rotations 
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Insertion 

• We begin by inserting a node x into a tree T, as if T is 

an ordinary Binary search tree. 

• We color x red. 

• We fix up the modified tree by re-coloring nodes and 

performing rotations, to guarantee that the red-black 

properties are preserved.

Insertion is accomplished in O(logn) time.
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14.3: Insertion 
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Insertion – case1
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Insertion- case2 
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Insertion –case3


